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Wave Propagation in Heterogeneous
Anisotropic Magnetic Materials

Karine Berthou-Pichavant, Fraisg Liorzou, and Philippe Gelin

Abstract—n order to examine guided wave propagation in unsaturated
magnetized materials, it seems reasonable to consider an alternation
of layers with antiparallel magnetization in a rectangular waveguide.
This approach is coherent with Schbmann’s model [1] which considers
partially magnetized ferrites as an alternation of antiparallel coaxial
cylinders. The finite-difference time-domain (FDTD) method had been Fig. 1. “Up” and “down” layers in a rectangular waveguide.
used in the case of an homogeneously filled rectangular waveguide. It is
adapted here to a guide patrtially filled with two antiparallel magnetization
layers. The modification of the FDTD algorithm at the air/ferrite and Il. WAVE PROPAGATION IN FERRITES
ferrite/ferrite interfaces is presented. Results are compared with the ones
obtained by a mode-matching technique.

A. FDTD Method in Saturated Ferrites

In the case of anisotropic materials [3]-[9], the FDTD method
. INTRODUCTION has been used to simulate wave propagation in an homogeneously
Due to their gyromagnetic properties, ferrites are being uséitled rectangular waveguide. Thus, a number of articles have already
more and more in microwave devices. This utilization requires thpresented ferrite FDTD discretization. In this paper, one exactly de-
knowledge of the permeability tensor. Devices including ferritescribes the expressions of the field components on different interfaces
are difficult to study analytically, and numerical methods such a&sich as the ferrite/dielectric interface or the interface between two
finite-difference time-domain (FDTD) should be used. Hence, Yeeayers with an antiparallel magnetization state (Fig. 1).
original cell [2] was modified to take magnetization into account: Sourceless Maxwell's time-dependent curl equations are
the discretization of the magnetic moment equation was added =

to Maxwell's relations, with a possibility of considering losses rotE = — 9B (2)
by Gilbert's term [3]. Totally filled rectangular waveguides have ot .
already been studied by such a method [3]-[9]. In each case, the rotH :gogfaE )
magnetic material is saturated by applying an external field. Typical T ot

applications are the calculation of effective permeability [3], or thghere E is the electric field,# is the magnetic field, is the
dispersion diagram [4]-[8]. In [8], [9], a FDTD algorithm is presente¢ghagnetic inductions, is the permittivity of the vacuum, ang is the
in which ferrite-frequency-dependent characteristics are introducgglectric constant of the ferrite. The second equation contains a scalar
via inverse Fourier transform and convolution. relation betweeri_j and E_:, such thatﬁ - E()EfE. The magnetic-

The long-term objective of this paper is to be able to treat corfioment equation allows one to consider the magnetic nature of the
ponents including nonsaturated ferrites. An extended FDTD methggrite, which is magnetized here parallel to (Oy). The internal field
was recently presented in which the use of an empirical eXpreSSiOﬂmf is then defined bﬁ7 — H7(_[7/ The magnetic moment equation

the permeability tensor takes the partial magnetization into accoyfich includes a lossterm (Gilbert's losses) is written as
[8]. The approach presented in this paper is different. Based on ani -

Schbmann’s model [1], one considers partially magnetized ferrites =_—yMAH+ Sy i (3)
as an alternation of thin layers, sometimes “up” magnetized (parallel dt Ms dt
to the external field), sometimes “down” magnetized (antiparallel {ghere)] is the magnetization vectad{/ s is the saturation magnetiza-
the external field). The problem is treated by the FDTD method {fbn, 4 is the gyromagnetic ratio, andis the damping term. Note that
a rectangular waveguide that is only partially longitudinally filledequations are written in the meter—kilogram—second—ampere (MKSA)
with two thin layers of the saturated ferrite. The algorithm is basgghit system. The induction is thus given &= o (H + M).
on discretization of Maxwell and magnetic moment equations. Detailsprevious equations can be discretized in each homogeneous area of
about the description of the continuity equations at the air/ferrite, aggk guide (air or ferrite), and continuity equations must be carefully
up/down interfaces are presented. The results are compared with thegfen on interfaces. In order to truncate the computational domain,
obtained by a mode-matching method [11] in the case of scatteriggcond-order Engquist and Majda’s absorbing boundary conditions
parameters calculations. are inserted [10]. Single-frequency excitation was used to allow the
adjustment of thed BC"s parameters with frequency over the whole
X -band.
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Fig. 2. 2-D extended mesh in ferrite. . .
conditions on bothE and H. However, Hx is not calculated on

) _ the interface. Consequently, a noncentered finite-difference is used to
This allows only the Tk mode to propagate. Note that the ferriteyake 17, appear explicitly on the interface in (2).

model presented here is also valid for wide-band excitation (e.9.Hence, relation (2) discretized in the air writes
Gaussian pulse). " 1,
The discretization of (1)-(3) which can be found in [4]-[6], is — Ey. (i, k) — Byl (i, k)
applied here for the T mode. As a result, the three-dimensional At
(3-D) cell reduces to the two-dimensional (2-D) cell as shown in Hzp Y264 L k) -6 = L k)

Fig. 2, since onlyFy, Bx, Hx, Bz, and H z components exist Ax
By i k+ 51 = B k4 4] G H k) — B Gk ‘g)} @
At ng-. T, - A,
+ 5 By b+ 1) = Ej (i, k)] (4a) i
B?Jr(l/z)[l- _ %, K] = B?f(l/z)[i _ ;—, 1] while in the ferrite the same eqlljatlon becomes
At . Byy(i, k) — By}~ (i, k)
s ACRORN HUER NG (4b) ~ o2y VR
Ey (i, k) _[ESTYP 4 g ) - PG 4k
=By + o { S ) A
A St n—(1/2); i n—(1/2)(;
y Hax (i, k+ 5)— Ha', (i, k)
ne(1/2) - At ), e i ’ 2 S
— HT (1/“)(z, k- 15)] _ E[H; (1/2)(Z+ 15 k) 2 s . 9)
—H;”’(l/z)(z’, -1 k)]} (5) Then, the tangential field components continuity condition is applied
» » » ” [Eys(i, k) = Eya(i, k), andHzx (i, k) = Hz,(i, k)], and adding
I 1 £ 7 AU S O s M (8) and (9) yields arE'y expression on the interface at time\¢
+ fSB;z+(1/2) + f4B?*(1/2) + f5_H:7(1/2) (6a) En(t k)
- — p n 2 n— b Yy AT
H;er(l/Z) = foH" (1/2) + f1B" +(1/2) + f2B" (1/2) o At
_ B g (/) g (/) (6b) =E; (i, k) ——

so(ep+1)
5

Expressions for evaluating the coefficientsare given in [4]-[6]. . H:f UG+ k) — HZ; 12 - %» k)
Recent papers [4]-[6] outlined the necessity to calcufateand H = Ax
at the same location. Ihese components are generally evaluated by a H,,,_Wg)(i - H,,,(]/Q)@ R
linear interpolation orB components. For instancB... (see Fig. 2) + == 2 7 = 2> "
is evaluated by the following averaging expression: ) Ax )

H Y0 k+ 5 - 1Y k=)

Bao(isk+3)=3[B:(i = 5. k) + B-(i — 5. b+ 1) —2 Az
+B.(i+ i k) +B.(i+ 5, k+1)].  (7)

(10)

This expression depends diiz on each side of the air/ferrite
The same procedure applies to the evaluatioBof (Fig. 2). Hz  jnterface and orff = on that interface (see Fig. 3). However, since
and H z are then calculated with (6a) and (6b). H: is not continuous across the interface, two different subscripts
are used in (10). As a resulf. s is evaluated by the expression

B. Equations on Air/Ferrite Interface nH/2) g gne(/2) | g pnt(/a) | g pe(1/2)
Since the accuracy of the numerical scheme near the transversal */ = 1) = ) = )
discontinuity air/ferrite is critical for FDTD, it is presented here in = fsB ' = fuBl T = f5H, (11)

detail. The interface is arbitrarily located on a plane whékg is where Ba e« has the following expression:
calculated (Fig. 3). As a result, an explicit expression for this electric 13 g exp '
field tangential component can be derived by applying continuityBus(i — £, k) = [Bas(i, k+ )+ Bay(i — 1, k+ 3)]. (12)
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H., is evaluated at each time by the expression 1017
1 1
gt/ L ety (13) om]
za /l,U za E :
E i
where B., is given by (4b). .86 )
]
0.48 - 1
C. “Up"/“Down” Interface Y
Schbmann [1] represents the partial magnetization state by a series 0zt i
of coaxial cylinders, i.e., alternatively “up” or “down” magnetized. !
Consider this type of alternation with two antiparallel layers in the ) -
: . (y n fi o . : 013 — ——— . .
guide (Elg. 1)_. The “up”/ down_ interface (Fig. 4)_ is treate_d exactly _ o e 5 " A !
as the air/ferrite case. As mentioned before, the interface is located in FREQUENGY (GH2)
a plane where componety is calculated. Index andd represent
field components in the “up” and “down” domains, respectively. (b)
Thus, according to (10), th&'y component is equal to Fig. 5. (a) Module of s11-parameter. “Up” domain:Hi = 200 Oe,
4IIMs = 2000 G, « = 0.02. “Down” domain: Hi = —200 Oe,
Ei, k) 4TMMs = —2000 G, « = 0.02. (- — =) modal method. (—) FDTD
Ve , method.a = 22.86 mm, Az = Az = a/20, At = Az/cyv/'3, number of
— E“_l(i k) — At time-domain iterations: 10000, length of each layer of ferrite insertiahz,
v ’ 2e0ey ey = 14.5. (b) Module ofs2; -parameter [same numerical values as in (a)].
) A N R P e Oy )
Ax
‘ is also able to simulate the wave propagation in nonsaturated ferrites.
n— p . n— 2) /- s . .
Hz, (1/2)(1 + % k)— Hz, @/ )(z - % k) In addition, it can be extended to an alternation of more layers.
Ax However, this may rapidly exhaust computing results. A possibility
H.,c;;—(i/a)u~ k+1)— Hat =2 - 1y is to combine the proposed algorithm with the theory of periodic
-2 — = A - (14)  structures. The findings in this paper indicate that this structure will

not be simple to treat with the FDTD method.

Hz, and Hz; are calculated by (11) and (12).
Hence, the algorithm consists of several parts. First, (4)—(6) is used IV. CONCLUSION
with parameters corresponding to the material of each region. ThenThe FDTD method has been extended to the case of a rectangular
the relation (10) and (14) derived from field continuity conditions argaveguide partially filled with two antiparallel layers of a ferrimag-
applied at air/ferrite and ferrite/ferrite interface, respectively. netic material. This study is based on discretization of Maxwell’s and
magnetic moment equations, and includes a careful treatment of field
components on the interfaces. The results are in good agreement with
IIl. RESULTS AND COMMENTS those obtained by a mode-matching method. The presented algorithm
S-parameters are shown in Fig. 5. The reflexion coefficient amdnstitutes an important step toward the numerical modeling of
transmission coefficient magnitudes are compared with those obtaimethsaturated ferrites, considered as a juxtaposition of domains with
by a mode-matching technique [11]. The case of two layers havitfteir own magnetization.
the same volume has been considered, to simulate a totally demag-
netized material. One can observe that the proposed model compares ACKNOWLEDGMENT
reasonably well with the mode-matching technique.
The magnetization state can be modified by changing the volumeThe authors wish to thank and are indebted to Dr. M. Ney for

of the layers. It is important to mention that the presented algorithnelpful discussions and the careful reading of this paper.
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Il. FORMALISM FOR DIRECT EXTRACTION OF
HBT's EQUIVALENT CIRCUIT PARAMETERS

The GalnP/GaAs HBT's characterized in this work were fabricated
by GEC Marconi. The authors have investigated single finger devices
with effective emitter area of 3 12 pum® (J;) and 3 x 20
pm? (J:). The metal-organic chemical vapor deposition (MOCVD)
grown device-layer structure consists of a 280GaAs emitter cap
nt-doped (4x 10'*/cn?), two GalnP emitter layers of 208 n*-
doped (2x 10"/cn?®) and of 1000A n-doped (3x 10'7/cnt),
1000A GaAs base layer b -doped (3x 10°/cn?*), 0.5u:m GaAs
pre-collector i -layer doped (18 /cn?®) and 0.7um GaAs collector
n"-doped (2x 10'%/cn?), all grown on a semi-insulating substrate.

The HBT's equivalent circuit used for this paper is the conven-
tionally accepted T model [5]. This circuit is divided in three parts:
the intrinsic part, the part in which the feedback capacitance is taken
into account, and the extrinsic part (each of them represented by the
matrix [Z]:, [Y];, and[Z].), respectively. Scattering parameters have
been measured for different bias points with an HP8720B network
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